

Binary Curves of Fixed Genus and Gonality with Many Points

Jon Grantham

West Coast Number Theory

December 2019

Center for Computing Sciences

17100 Science Drive • Bowie, Maryland 20715

This is ongoing joint work with Xander Faber.

manypoints.org

• For given (small) finite field and (small) genus, what is the maximum number of points a smooth, projective curve can have?

manypoints.org

- For given (small) finite field and (small) genus, what is the maximum number of points a smooth, projective curve can have?
- There is a fairly extensive database at manypoints.org.
- For \mathbb{F}_2 it looks like:

	g	$N_2(g)$
	0	3
	1	5
	2	6
	3	7
	2 3 4 5	8 9
	5	9

The gonality γ of a curve X over a field k is the minimum degree of a k-morphism X → P¹.

- The gonality γ of a curve X over a field k is the minimum degree of a k-morphism X → P¹.
- Gonality 1 curves are isomorphic to P¹, so coincide with genus 0 curves.
- Gonality 2 curves are **hyperelliptic**, and include elliptic curves (genus 1 and up).
- Gonality 3 curves are known as trigonal curves.

• Why study the maximum number of points a curve can have with fixed genus and gonality?

- Why study the maximum number of points a curve can have with fixed genus and gonality?
- Van der Geer (2000) asks, "What is the maximum number of rational points on a curve of genus g and gonality γ defined over F_q?"

or

- Why study the maximum number of points a curve can have with fixed genus and gonality?
- Van der Geer (2000) asks, "What is the maximum number of rational points on a curve of genus g and gonality γ defined over F_q?"

or

• It's fun and interesting.

Let's start a table for binary curves

• Proposition: If g = 0, then $\gamma = 1$. If g = 1, then $\gamma = 2$. If $g \ge 2$, then $\gamma \le 2g - 2$.

Hyperelliptic curves

- Proposition: The number of points on a binary curve of gonality γ is ≤ 3γ.
- Proposition: For each genus g ≥ 2, there exists a hyperelliptic curve over 𝔽₂ with 6 rational points.
- Proof: Look at $y^2 + [1 + x^g(x+1)] \ y = [x(x+1)]^{g-\delta} = 0$, where $\delta = g \pmod{2}$.

• Proposition: For a curve with rational points, $\gamma \leq g$.

Genus 3, Gonality 4

- A genus-3 curve with rational points must have gonality \leq 3.
- $(x^2 + xz)^2 + (x^2 + xz)(y^2 + yz) + (y^2 + yz)^2 + z^4 = 0$ has gonality 4.
- \bullet Demonstrate lack of degree-3 morphism by looking at \mathbb{F}_4 points.

Fun facts about genus 4 non-hyperelliptic curves

- Non-hyperelliptic curves of genus 4 can be embedded as the intersection of a quadric surface and a cubic surface.
- If the quadric surface is xy + zw = 0 or $xy + z^2 = 0$, the curve is trigonal.
- If the quadric surface is $xy + z^2 + wz + w^2 = 0$, the curve is not.

• Consider the curve:

$$xy + zw = 0$$

$$xy^{2} + y^{3} + x^{2}z + y^{2}z + xz^{2} + x^{2}w + y^{2}w + xw^{2} = 0.$$

• It has 8 points and is trigonal.

- The surface $xy + z^2 + wz + w^2 = 0$ has only 5 rational points.
- Consider the curve:

$$xy + z^{2} + zw + w^{2} = 0$$

$$xy^{2} + x^{2}z + y^{2}z + yz^{2} + x^{2}w + z^{2}w = 0.$$

• It has 5 points.

- If a genus 4 curve has gonality 5 or 6, it must be pointless.
- Consider the curve:

$$xy + z^{2} + zw + w^{2} = 0$$

$$x^{3} + y^{3} + z^{3} + y^{2}w + xzw = 0.$$

- Not gonality 4; look at \mathbb{F}_{16} points.
- Write down degree-5 morphism.
- Do this for all pointless curves to rule out gonality 6. (Computations!)

Updated Table

- Trigonal curves of genus 5 are birationally equivalent to plane quintics with a multiplicity-2 singularity.
- This gives an upper bound of 2² + 2 + 1 + 1 (based on the size of ℙ²).
- We achieve this bound with

$$xyz^{3} + x^{3}z^{2} + y^{3}z^{2} + x^{4}z + xy^{3}z + y^{4}z + x^{4}y + x^{2}y^{3} = 0.$$

• The genus-5 curves on manypoints.org with 9 points have degree-4 morphisms and thus gonality 4.

- Non-hyperelliptic, non-trigonal genus-5 curves are intersections of three quadric surfaces.
- Can exhaust over pointless genus-5 curves to rule out gonality above 5.
- Can exhaust over all genus-5 curves by looking at possible divisors to show that the maximum number of points on a gonality-5 curve is 3.

Current Table

- Refine gonality computation code and algorithm.
- Ternary curves.
- gonality.org

