# Binary Curves of Fixed Genus and Gonality with Many Points 

Jon Grantham<br>West Coast Number Theory

December 2019

Center for Computing Sciences
17100 Science Drive • Bowie, Maryland 20715

## Work

This is ongoing joint work with Xander Faber.

## manypoints.org

- For given (small) finite field and (small) genus, what is the maximum number of points a smooth, projective curve can have?

IDA

## manypoints.org

- For given (small) finite field and (small) genus, what is the maximum number of points a smooth, projective curve can have?
- There is a fairly extensive database at manypoints.org.
- For $\mathbb{F}_{2}$ it looks like:

| $g$ | $N_{2}(g)$ |
| :---: | :---: |
| 0 | 3 |
| 1 | 5 |
| 2 | 6 |
| 3 | 7 |
| 4 | 8 |
| 5 | 9 |

## Gonality

- The gonality $\gamma$ of a curve $X$ over a field $k$ is the minimum degree of a $k$-morphism $X \rightarrow \mathbb{P}^{1}$.

IDA

## Gonality

- The gonality $\gamma$ of a curve $X$ over a field $k$ is the minimum degree of a $k$-morphism $X \rightarrow \mathbb{P}^{1}$.
- Gonality 1 curves are isomorphic to $\mathbb{P}^{1}$, so coincide with genus 0 curves.
- Gonality 2 curves are hyperelliptic, and include elliptic curves (genus 1 and up).
- Gonality 3 curves are known as trigonal curves.
- Why study the maximum number of points a curve can have with fixed genus and gonality?

IDA

- Why study the maximum number of points a curve can have with fixed genus and gonality?
- Van der Geer (2000) asks, "What is the maximum number of rational points on a curve of genus $g$ and gonality $\gamma$ defined over $\mathbb{F}_{q}$ ?"
or

IDA

- Why study the maximum number of points a curve can have with fixed genus and gonality?
- Van der Geer (2000) asks, "What is the maximum number of rational points on a curve of genus $g$ and gonality $\gamma$ defined over $\mathbb{F}_{q}$ ?"
or
- It's fun and interesting.


## $\underline{\text { Let's start a table for binary curves }}$

- Proposition: If $g=0$, then $\gamma=1$. If $g=1$, then $\gamma=2$. If $g \geq 2$, then $\gamma \leq 2 g-2$.

| $g$ | 0 | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 3 |  |  |  |  |  |
| 2 |  | 5 | 6 | $?$ | $?$ | $?$ |
| 3 |  |  |  | $?$ | $?$ | $?$ |
| 4 |  |  |  | $?$ | $?$ | $?$ |
| 5 |  |  |  |  | $?$ | $?$ |
| 6 |  |  |  |  | $?$ | $?$ |
| 7 |  |  |  |  |  | $?$ |
| 8 |  |  |  |  |  | $?$ |

## Hyperelliptic curves

- Proposition: The number of points on a binary curve of gonality $\gamma$ is $\leq 3 \gamma$.
- Proposition: For each genus $g \geq 2$, there exists a hyperelliptic curve over $\mathbb{F}_{2}$ with 6 rational points.
- Proof: Look at $y^{2}+\left[1+x^{g}(x+1)\right] y=[x(x+1)]^{g-\delta}=0$, where $\delta=g(\bmod 2)$.

| $\gamma^{g}$ | 0 | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 3 |  |  |  |  |  |
| 2 |  | 5 | 6 | 6 | 6 | 6 |
| 3 |  |  |  | $?$ | $?$ | $?$ |
| 4 |  |  |  | $?$ | $?$ | $?$ |
| 5 |  |  |  |  | $?$ | $?$ |
| 6 |  |  |  |  | $?$ | $?$ |
| 7 |  |  |  |  |  | $?$ |
| 8 |  |  |  |  |  | $?$ |

## Genus 3, Gonality 3

- Proposition: For a curve with rational points, $\gamma \leq g$.

| $g$ | 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 3 |  |  |  |  |  |
| 2 |  | 5 | 6 | 6 | 6 | 6 |
| 3 |  |  |  | 7 | $?$ | $?$ |
| 4 |  |  |  | $?$ | $?$ | $?$ |
| 5 |  |  |  |  | $?$ | $?$ |
| 6 |  |  |  |  | $?$ | $?$ |
| 7 |  |  |  |  |  | $?$ |
| 8 |  |  |  |  |  | $?$ |

IDA

## Genus 3, Gonality 4

- A genus-3 curve with rational points must have gonality $\leq 3$.
- $\left(x^{2}+x z\right)^{2}+\left(x^{2}+x z\right)\left(y^{2}+y z\right)+\left(y^{2}+y z\right)^{2}+z^{4}=0$ has gonality 4.
- Demonstrate lack of degree-3 morphism by looking at $\mathbb{F}_{4}$ points.

| $g$ | 0 | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 3 |  |  |  |  |  |
| 2 |  | 5 | 6 | 6 | 6 | 6 |
| 3 |  |  |  | 7 | $?$ | $?$ |
| 4 |  |  |  | 0 | $?$ | $?$ |
| 5 |  |  |  |  | $?$ | $?$ |
| 6 |  |  |  |  | $?$ | $?$ |
| 7 |  |  |  |  |  | $?$ |
| 8 |  |  |  |  |  | $?$ |

## Fun facts about genus 4 non-hyperelliptic curves

- Non-hyperelliptic curves of genus 4 can be embedded as the intersection of a quadric surface and a cubic surface.
- If the quadric surface is $x y+z w=0$ or $x y+z^{2}=0$, the curve is trigonal.
- If the quadric surface is $x y+z^{2}+w z+w^{2}=0$, the curve is not.


## Genus 4, Gonality 3

- Consider the curve:

$$
\begin{aligned}
x y+z w & =0 \\
x y^{2}+y^{3}+x^{2} z+y^{2} z+x z^{2}+x^{2} w+y^{2} w+x w^{2} & =0 .
\end{aligned}
$$

- It has 8 points and is trigonal.


## Genus 4, Gonality 4

- The surface $x y+z^{2}+w z+w^{2}=0$ has only 5 rational points.
- Consider the curve:

$$
\begin{aligned}
x y+z^{2}+z w+w^{2} & =0 \\
x y^{2}+x^{2} z+y^{2} z+y z^{2}+x^{2} w+z^{2} w & =0
\end{aligned}
$$

- It has 5 points.


## Genus 4, Pointless Curves

- If a genus 4 curve has gonality 5 or 6 , it must be pointless.
- Consider the curve:

$$
\begin{aligned}
x y+z^{2}+z w+w^{2} & =0 \\
x^{3}+y^{3}+z^{3}+y^{2} w+x z w & =0
\end{aligned}
$$

- Not gonality 4 ; look at $\mathbb{F}_{16}$ points.
- Write down degree-5 morphism.
- Do this for all pointless curves to rule out gonality 6 . (Computations!)


## $\underline{\text { Updated Table }}$

| $g$ | 0 | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  |  |  |  |  |  |
| 2 | 3 |  |  |  |  |  |
| 3 |  |  |  | 6 | 6 | 6 |
|  | 6 |  |  |  |  |  |
| 4 |  |  |  | 0 | 5 | $?$ |
| 5 |  |  |  |  | 0 | $?$ |
| 6 |  |  |  |  |  | $?$ |
| 7 |  |  |  |  |  | $?$ |
| 8 |  |  |  |  |  | $?$ |

IDA ${ }^{133 / 7}$

## Genus 5, Gonality 3 and 4

- Trigonal curves of genus 5 are birationally equivalent to plane quintics with a multiplicity- 2 singularity.
- This gives an upper bound of $2^{2}+2+1+1$ (based on the size of $\mathbb{P}^{2}$ ).
- We achieve this bound with

$$
x y z^{3}+x^{3} z^{2}+y^{3} z^{2}+x^{4} z+x y^{3} z+y^{4} z+x^{4} y+x^{2} y^{3}=0 .
$$

- The genus-5 curves on manypoints.org with 9 points have degree-4 morphisms and thus gonality 4 .


## Genus 5, Gonality 5 and up

- Non-hyperelliptic, non-trigonal genus-5 curves are intersections of three quadric surfaces.
- Can exhaust over pointless genus-5 curves to rule out gonality above 5 .
- Can exhaust over all genus-5 curves by looking at possible divisors to show that the maximum number of points on a gonality-5 curve is 3 .


## Current Table

| $\boldsymbol{\gamma}$ | 0 | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 3 |  |  |  |  |  |
| 2 |  | 5 | 6 | 6 | 6 | 6 |
| 3 |  |  |  | 7 | 8 | 8 |
| 4 |  |  |  | 0 | 5 | 9 |
| 5 |  |  |  |  | 0 | 3 |
| 6 |  |  |  |  |  |  |
| 7 |  |  |  |  |  |  |
| 8 |  |  |  |  |  |  |

IDA ${ }^{16 / 17}$

## Future Work

- Refine gonality computation code and algorithm.
- Ternary curves.
- gonality.org

IDA

